Industry Watch — Sapphire at CES 2015

CES 2015 has come and gone and, as usual, we are left with an overwhelming amount of new and exciting products to sift through.

Don’t worry though! If you’re interested in all things sapphire-related coming out of the show, we have you covered.

Here are the biggest sapphire related unveilings from CES 2015:

  • CES2015: Hands On With Huawei’s Ascend P7 – Android Headlines: While Apple may have failed to incorporate sapphire into its new iPhone, Chinese smartphone manufacturer Huawei has had no problem incorporating the material. During CES, Huawei showcased a variety of smartphones in its booth, including phones from its Premium “P” series. This included the new, Huawei Ascend P7, which features a 5 inch display and an optional sapphire faceplate. 
  • Garmin’s fēnix 3 Multisport GPS Watch Keeps Its Active Side Secret – Gizmodo: Garmin’s popular fēnix adventure watch is receiving a facelift this year to make the rugged timepiece look more polished. The third-generation watch is still fully capable with GPS and pre-set modes for various outdoor activities like swimming or skiing, but is now sleeker with a high-contrast color display and a scratch-resistant sapphire face. 
  • Wellograph, the first sapphire crystal wellness watch, gets a new look, more color choices – AppAdvice: The team that developed the Wellograph wellness watch announced an OS update, new color choices and straps at CES. The Wellograph, which is best known for being the first wellness watch to incorporate sapphire into its display, now offers a new OS which will provide users with features such as sleep tracking and body readiness testing. Along with the new features, the watch is now available in pink gold and white pearl.
  • Sony’s Life Space UX makes the smart home look good – Mashable: One of the most buzzworthy terms at CES over the past few years has been the Internet of Things. With beautifully designed devices and appliances, Sony’s Life Space UX gives just a peek at what the smart home of the future will look like. The highlight of the collection is the Symphonic Light, which combines an LED light with a clear glass covering that doubles as a speaker. The LED bulb, which uses sapphire substrates, makes this light not only attractive, but energy-efficient as well. The Symphonic Light streams music from a smartphone or other connected device, and multiple lights can be connected to fill a room with sound.Sony

Sapphire Industry Watch – December 12

  • Denmark laboratory shows off latest energy saving street lamps– CCTV America: The Danish Outdoor Lighting Lab is demonstrating the world’s most efficient outdoor lighting systems in a small industrial park just outside Copenhagen so that city planners can get a first-hand look at what is available for their municipalities.. All examples have Wi-Fi computer management systems and several have motion sensors and LEDs. These technologies bring enormous potential for energy savings, particularly in developing countries where it is essential to bring down the carbon footprint.
  • “Inspired Light” Combines Light Painting And Automotive Photography– Fstoppers:  World-renowned light painting photographer Patrick Rochon recently finalized a project with Infiniti where he photographed XQ70s in motion with multi-colored LED strips attached to them, making it appear as though the cars painted pictures. Precision drivers were hired to “light paint” with the vehicles, each of which had a total of 2,520 LEDs with output exceeding 30,000 lumens.
  • Nobel Prize winners reflect on difficulties faced in developing blue LED– The Asahi Shimbun: The three winners of this year’s Nobel Prize in Physics spoke at Stockholm University on December 8 about the difficulties they faced in the 1980s as they were developing the blue LED. They recalled that one of the biggest obstacles was creating crystals needed for the blue LED from gallium nitride. After years of trying to come up with the right material, the pure crystals were finally created in 1985.
  • Designers illuminate us on their winter wonders– The Japan Times: While Japanese lighting displays rarely include typical Christmas icons such as Santa or dancing snowmen, the illuminations are just as whimsical and often serve as a showcase for technological advances in the field of LEDs. These displays have become massive endeavors with corporate sponsors ranging from real estate companies to brands such as Hennessey Cognac. Architecture professor at Tokyo City University Shiego Kobayashi noted that the massive display of light lift people’s spirits and eases the coldness of the long winter nights.
  • LED market to grow at 17.9% from $46.4bn in 2014 to $105.5bn in 2019– Semiconductor Today: As the usability and efficiency of LEDs over traditional light bulbs has steadily increased over the last decade, the global market for high-brightness LEDs is expected to grow at a CAGR of 17.9% from nearly $46.4 billion in 2014 to $105.5 billion in 2019. LEDs for general illumination applications have the highest growth rate of any major segment.

A Vertically Integrated Approach to Sapphire Production

One of the things we take pride in at Rubicon Technology is our end-to-end manufacturing capabilities.

By having state-of-the-art facilities that support vertical integration, starting with the raw material aluminum oxide, we’re able to eliminate excess costs for our customers, and provide greater quality control to ensure the delivery of defect-free sapphire with diameters of 2, 4, 6, and soon, 8 inches.

This ultimately benefits LED chip manufacturers since high-quality, large-diameter wafers provide a higher yield and reduce costs of LEDs for commercial and residential use. Improved cost and luminous efficiency are fundamental to the acceleration of LED adoption in the marketplace — and continue to be strategic priorities for Rubicon.

The infographic below explains the basics of the six-step process of transforming sapphire into an LED module. Rubicon carries out steps 1 through 4 of the process — from crystal growth to wafer processing — before turning over to LED chip manufacturers.

We should also note that Rubicon recently started providing patterned sapphire substrates (PSS) to increase the LEDs’ light output by up to 30 percent. PSS is added directly prior to the epitaxial growth process.

The latter part of the process, after drilling, is primarily carried out in Rubicon’s facility in Malaysia. This facility enables Rubicon to reduce costs associated with making a 6-inch wafer.

For more info on the benefits of a vertically integrated approach, check out pages 50-55 of Compound Semiconductor’s March 2013 edition.

Rubicon Announces Large Diameter Patterned Sapphire Substrates

PSS with dome shape

PSS with dome shape

 

This week, Rubicon Technology announced the launch of the first commercial line of large diameter patterned sapphire substrates (PSS) in four-inch through eight-inch diameters.  The new product line provides LED chip manufacturers with a ready-made source of large diameter PSS to serve the needs of the rapidly growing LED general lighting industry.

This is doubly important since patterning helps improve both epitaxial growth and light extraction for each chip and enhances a chipmaker’s throughput and efficiency.  Rubicon announced that they have fully customizable sub-micron patterning capability with tight dimensional tolerances, within ±0.1 µm.  Rubicon offers LED chip manufacturers more usable area to maximize the number of chips per wafer due to an edge exclusion zone as small as 1 mm.  Rubicon’s patterning is available in a range of shapes including cone, dome and pyramid, and in a range of orientations.  Further customization of geometry, pattern and orientation is available too.  You can find a brochure about it on Rubicon’s web site here.

Rubicon’s president and CEO Raja Parvez pointed out the importance of large diameter patterned sapphire substrates in a news release.  “As LED-based general lighting gains worldwide adoption, large-diameter patterned sapphire substrates will become necessary to meet the demands of the rapidly growing lighting market.”

Parvez added that the company developed an unmatched technology platform that is vertically integrated from raw material through crystal growth, large diameter polished wafers, and now custom PSS in 4”, 6” and 8” diameters.  According to Parvez, vertical integration enables Rubicon to produce progressively larger sapphire products while providing customers with exceptional quality, cost control, reliability, and consistency.

For Further Reading

Rubicon Technology, Rubicon Technology Launches First Commercial Line of Large Diameter Patterned Sapphire Substrates for the LED Industry, http://bit.ly/1itVMHq

Clearlysapphire.com, LED Lighting Spotlight: Patterned Sapphire Substrates, http://blog.clearlysapphire.com/?p=390

 

Sapphire – Quality Matters, Part 2: Transmission Quality

Recently, Novus Light Today published an article by Dr. Jonathan Levine, Director of Technical Business Development at Rubicon Technology, about sapphire quality.  His article shares a thorough review of the measures of sapphire quality for optical-grade applications.  Last week, we looked at the first two metrics, chemical analysis and X-ray rocking curves.  This week, we’ll look at transmission quality.

Levine writes that the quality of a sapphire is determined by how closely the grown crystal matches the ideal structure with respect to the arrangement of atoms within the lattice, dislocations, defects, and stress.  Root causes for these problems often originate from insufficient purity of the starting material and the growth process itself.

Sapphire exhibits excellent transmission in the ultraviolet (UV) to the mid-infrared (IR) range (~200 – 5000 nm).   According to Levine, conditions within the sapphire growth furnace can induce subtle interactions between the molten sapphire and the growth environment.  These interactions can produce bubbles, dislocations and other stresses that could impact optical performance.   Levine says that carefully controlling the growth environment produces sapphire that maintains excellent transmission at 200 nm through the mid-IR wavelengths.  He illustrates the impact of furnace interactions by comparing Rubicon’s ES-2 sapphire with another commercial sapphire maker’s crystal produced using a different growth method in the figure below.  From the image in the post, you can see a sharp absorption peak at 200 nm for sapphire produced by the commercial maker that is absent in sapphire grown by Rubicon.

Optical transmission of sapphire depicting a sharp absorption peak at 200 nm for sapphire produced by a commercial producer that is absent in sapphire grown by Rubicon.  Inset: Optical transmission for Rubicon sapphire from the visible to mid-IR range approaching 90% due to the high quality of the material.

Optical transmission of sapphire depicting a sharp absorption peak at 200 nm for sapphire produced by a commercial producer that is absent in sapphire grown by Rubicon. Inset: Optical transmission for Rubicon sapphire from the visible to mid-IR range approaching 90% due to the high quality of the material.

For Further Reading

Novus Light Today, Optical-Grade Sapphire, Where Quality Matters, http://www.novuslight.com/optical-grade-sapphire-where-quality-matters_N1596.html#sthash.giGipxT1.dpuf

Alternative Substrates – Dimming the Hype

Two-inch, Four-inch and Six-inch Sapphire Wafers

Two-inch, Four-inch and Six-inch Sapphire Wafers

Today, more than 80% of LEDs are made based on sapphire wafers.   Recently, Lux Research published a report, Dimming the Hype: GaN-on-Si Fails to Outshine Sapphire by 2020, about the state of alternative substrates.  In LED production, sapphire is used as the substrate onto which the chemicals that will become the emitting layer of the LED are deposited as a vapor.  With the LED lighting market expected to grow to $80 billion, Lux Research expects the substrate market to grow to $4 billion in 2020 making it a highly attractive market.  Lux expects sapphire to continue to dominate the substrate market.

“Silicon is already widely used for electronics, and some LED die manufacturers are hoping to take advantage of silicon substrates,” said Pallavi Madakasira, Lux Research Analyst and lead author of the Lux report.  She explained that GaN-on-Si presents technical challenges such as cracking and a lattice mismatch that reduces the performance of LEDs based on the alternative substrate.

In an interview with Compound Semiconductor, Madakasira spoke about LEDs based on silicon substrates.  She doesn’t buy the argument that GaN-on-silicon makers can save on costs.  She says that even if they use fully depreciated CMOS equipment, the process of depositing complex buffer layers onto silicon prior to GaN deposition to overcome GaN and silicon lattice mismatches, adds time and cost to a manufacturing line.

Madakasira also shared performance data in her report with Compound Semiconductor. She notes that alternative substrates haven’t provided the performance of sapphire.  According to Lux, the luminance efficacy of GaN-on-SiC LEDs is 200 Lumens per Watt with GaN-on-sapphire devices coming in at between 150 to 180 Lumens per Watt.

What does this mean?  The Lux report concluded that sapphire will remain highly competitive for the rest of the decade.  GaN-on-silicon, will snare only 10% market share while GaN-on-silicon carbide will grow to 18% of the market.   Where do they fit? Here are Lux’s conclusions:

  • Choice and cost of LEDs will determine adoption. Where GaN-on-sapphire is suited to all applications, GaN-on-bulk GaN will be relegated to niche commercial lighting and GaN-on-Si, with unproven performance, will be better suited to cost-sensitive residential applications.
  • Four-inch wafers will rule (for now), though six-inch wafers start to come into vogue. Four-inch wafers will peak at 62% market share with $2.1 billion in 2017 sales. Later, the LED industry will move towards 6” epiwafers, which will take a 35% share, equivalent to $1.4 billion, in 2020.
  • Technology will advance sapphire substrates. Sapphire substrate manufacturing technology has advanced significantly with specialists such as Rubicon and Monocrystal demonstrating substrates up to 12” in diameter. New methods like hydride vapor phase epitaxy (HVPE) will further improve throughput and cut costs, keeping sapphire highly competitive for the rest of the decade.

For Further Reading

Lux Research, Epi-Wafer Market to Grow to $4 Billion in 2020 as LED Lighting Zooms to $80 Billion, http://www.luxresearchinc.com/news-and-events/press-releases/182.html

Compound Semiconductor, Sapphire Substrates to Lead Future LED Markets, http://www.compoundsemiconductor.net/csc/indepth-details/19736669/Sapphire-substrates-to-lead-future-LED-market.html

New Applications for Sapphire: Medical (Part 2 of 3)

rod of asclepiusNew industries are finding man-made sapphire a desirable material. The field of medicine is looking at sapphire for its optical transmission range, durability and chemical inertness for bio-compatibility.

Sapphire’s optical properties and durability offer advantages for specific medical laser applications in dermatology, ophthalmology and dentistry. Sapphire is widely used in surgical systems for its laser transmission, high resistance to heat and non-thrombogenic properties (meaning it doesn’t promote clotting).  It is used as a laser window for endoscope lenses, laser hair removal systems and blood cell counters.  In addition, sapphire products are used for surgical tools, implants, braces.  Sapphire microscalpels are transparent blades that make it easier to visualize and illuminate capillary vessels, nerves, cutting zones and cutting depth compared with traditional metal alternatives.

One area that has potential for sapphire is in artificial joint replacements.  Many joint replacements include metal, ceramic, metal-polymer and ceramic polymer endoprosthesis. This is an area that may develop friction and wear over time causing the joint to fail.  Endoprostheses made of metal and ceramics may interact with the body and also degrade from friction over time.  For example, metal-on-metal artificial hips have a lifetime of 15 to 30 years, but have been known to fail earlier.  Sapphire is attractive for endoprostheses for its bio-compatibility since it is chemically inert and won’t react with the body as well as its low friction coefficient, hardness and durability

For Further Reading

The New York Times, The High Cost of Failing Artificial Hips, http://www.nytimes.com/2011/12/28/business/the-high-cost-of-failing-artificial-hips.html?pagewanted=all

IMS Research/Rubicon Technology, White Paper: Opportunities for Sapphire, Jamie Fox, http://rubicontechnology.com/resources/papers,

Sapphire: Material, Manufacturing, Applications, by E. R. Dobrovinskaya, Leonid A. Lytvynov, V. V. Pishchik. Springer Sciences Business Media, ISBN: 978-1441946737.

New Applications for Sapphire: Aerospace & Defense, Part 1 of 3

1158-69 (1)

Range of sapphire products available from Rubicon Technology including large optical windows and other shapes for aerospace and defense.

Sapphire’s unique properties make it a perfect material for high-performance applications due to its optical transparency, physical strength, resistance to abrasion and corrosion, temperature durability, chemical inertness, and bio-compatibility. As a result, it is perfectly suited for extreme environments where material durability is just as important as optical clarity.

One extreme use case is in the aerospace and defense industry where there’s a need for rugged windows for targeting pods and missile domes, most notably for the US F-35 fighter jet, that may come in contact with harsh conditions from the harsh, gritty desert with extremely high temperatures to high altitudes with extreme low temperatures.

Market research firm Yole Developpement determined that non-substrate applications for sapphire in the defense, semiconductor and other applications represent 25% of the sapphire industry revenue in a new study.  The market represents a solid growth opportunity for sapphire makers.

While there is opportunity, innovation is needed.  Sapphire traditionally has been limited to smaller shapes and sizes using traditional growth methods.  As sensor technology and applications, in defense and aerospace in particular, have evolved, the size requirements for sapphire windows have grown substantially.  One company that is innovating sapphire crystal growth is Rubicon Technology.

In a recent paper, Rubicon’s Dr. Jonathan Levine, Director of Technical Business Development, detailed how Rubicon successfully produced very large sapphire blanks using a highly modified horizontal directional solidification process. This new method, named the Large‐Area Netshape Crystal Extraction (LANCE) system is currently able to produce crystals of several different orientations. The company plans to produce sapphire windows as large as 36 x 18 x 0.8 inches.

For Further Reading

Clearlysapphire.com Blog, Opportunities for Sapphire: New Applications & Markets Explained, http://blog.clearlysapphire.com/?p=426

Clearlysapphire.com Blog, How Large Can You Go? Sapphire Windows Grow Up and Across, http://blog.clearlysapphire.com/?p=409

Rubicon Technology, Synthesis and characterization of large optical-grade sapphire windows produced from a horizontal growth process, http://www.rubicontechnology.com/sites/default/files/Synthesis%20and%20Characterization%20of%20Large%20Optical%20Grade%20Sapphire%20Windows.pdf

Opportunities for Sapphire: New Applications & Markets Explained

Rubicon Technology announced the publication of Opportunities for Sapphire, a new white paper that examines markets that leverage the highly versatile material, sapphire.  Based on research from IMS Research, the paper takes an in-depth look at the demand for sapphire in key markets including LED, semiconductor and optical.  You can find the white paper on Rubicon’s new web site at http://rubicontechnology.com/resources/papers, but here’s a look at what you’ll find.

Sapphire has emerged as a versatile material in a range of industries for many varied applications.  Sapphire’s inherent physical attributes for durability, light transmission, chemical inertness and thermal insulation make it desirable for a growing list of applications in a range of markets.  The white paper examines the opportunity for the LED market in general lighting, backlighting and display and uses in industries like automotive.  It also explores sapphire applications for optical-grade sapphire windows, lenses and covers as well as semiconductor applications such as silicon-on-sapphire chips in radio frequency integrated circuits (RFICs) for RF antennas, as digitally tunable capacitors (DTCs) and power amplifiers in smart phones and other consumer devices.

According to white paper author Jamie Fox of IMS Research, high quality sapphire delivers great benefits to LED chip manufacturers gearing up for applications like LED-based general lighting.  “Every LED company we spoke to during the research for this paper purchases sapphire and benefits from the superior yields and quality,” writes Fox.  “Substrate demand in 2012 is estimated at 42 million two-inch equivalent wafers (TIE) and expected to grow to 57 million TIE in 2013 according to market research firm Displaybank.  As the lighting market grows into a more significant segment and larger, thicker wafers are utilized, sapphire demand will accelerate.”

“Opportunities for Sapphire” also discusses the role of sapphire in LED production, the emergence of the market for large diameter sapphire wafers and sapphire demand by application.

LED Sapphire Ingot Demand Forecast

LED Sapphire Demand Graphic WPPR

(source: DisplayBank)

 

 

 

 

 

 

 

The market has shown growing demand since 2010 with an expansion of the LED/LCD TV market and the growth of applications such as general lighting.

Green line indicates rate of growth per year

Key:  Demand in thousands of millimeters of two-inch equivalent sapphire

Commercial Sapphire Spotlight – Vertical Integration in Sapphire

Rubicon Family of Sapphire Boules

Last month, Compound Semiconductor Magazine featured a contributed article about Vertical Integration in sapphire production by Raja M. Parvez, President and CEO of Rubicon Technology.  Rubicon has adopted vertical integration to set itself apart from other sapphire companies.  The article details Rubicon’s approach.

Vertical integration isn’t a new concept. It has been around since the 1800s when US Steel tycoon Andrew Carnegie introduced the vertical integration by owning virtually every part of the steel-making value chain from iron ore through steel mills to physically building the railroads.  Later, in the 1920s, Ford Motor Company decided to make the steel for their cars, popularizing the concept further.

According to Rubicon’s president and CEO Raja Parvez, vertical integration holds the key to Rubicon’s cost structure and reliable supply of high-quality products.  This integrated approach influences every step in the growth of sapphire crystals and their processing into wafers. The company’s end-to-end manufacturing capability, with strong intellectual property at each step of the manufacturing process, produces an advantageous cost structure and provides better control of product quality and delivery schedules. Vertical integration is also central to the company’s ability to grow larger and larger sapphire and be the first to market with large-diameter sapphire wafers for the LED and SoS/RFIC markets.  To date, Rubicon has shipped more than 400,000 6-inch wafers.

To read the full article, visit:   http://content.yudu.com/A2360p/CompSemMar13/resources/index.htm?referrerUrl=http%3A%2F%2Fwww.compoundsemiconductor.net%2Fcsc%2Fmagazine.php