9 Things You Didn’t Know About Sapphire

It’s no surprise that there’s been recent speculation about Apple’s use of sapphire in the display screen of the iPhone 6. Regardless of whether or not that happens, sapphire is a modern marvel that has interesting applications far beyond the smartphone market.

Rubicon Technology, Inc., has put together a list of things you might not know about sapphire, from the characteristics that make it so versatile to its potential future applications.

Let’s take a look at why sapphire offers so much promise.

  1. Sapphire used for practical purposes, outside of jewelry, is synthetically grown, and then cut and polished, since clear, colorless sapphire gemstones almost never occur in nature. Synthetic sapphire has a similar composition to the gemstone, but is grown under controlled conditions to prevent  internal stresses that can weaken the crystal. Check out a video on how sapphire is made, featured on the TV show “How Do They Do It.”
  1. Speaking of heat, sapphire has a melting temperature of 2030 degrees Celsius — which is 20x the boiling point of water.
  1. Sapphire is the second hardest material on earth behind diamond and is so strong that it’s been effectively used as bulletproof “glass.”
  1. Apple isn’t the first smartphone company to utilize a sapphire face plate. In fact, luxury phone maker Vertu has been using sapphire screens for 15 years. You can also find sapphire onlens covers of certain smartphone cameras and the fingerprint scanner/home button on the iPhone 5S.
  1. Sapphire is the primary material used as the foundation for LED chips, which can be found all around you in products like traffic lights, light bulbs, HDTVs, tablets, computer monitors, gaming systems and mobile phones. The majority of the commercial sapphire produced today goes into LEDs.
  1. In the future, sapphire could be used for a variety of medical purposes, including artificial joint replacements, given that it’s not only biocompatible so it won’t react with the body but also harder and more durable than ceramics and stainless steel.
  1. You may know that high-end watches have sapphire faces given the crystals’ exceptional clarity and scratch-resistant surfaces. Those same reasons are why sapphire is used in the optic heads of missiles.
  1. Sapphire is used to cover barcode scanners, like the ones you see at the grocery store.
  1. The potential uses for sapphire are truly unlimited! Just imagine one day having ultra-strong wine glasses for those of us with the propensity for breaking them.

Sapphire Demystified

A look at Rubicon Technology's sapphire

A look at Rubicon Technology’s sapphire

There has been so much hype and misinformation about sapphire lately, particularly surrounding sapphire covers or faceplates for smartphones, that we thought we’d review some basic info about commercial sapphire.

  • “Sapphire glass”

There really isn’t any such thing as sapphire “glass.” Sapphire is not a kind of glass; it’s a very hard monocrystalline material. The proper way to reference the clear layer of stuff that may soon cover the screen of your smart phone is as a “sapphire cover” or “sapphire faceplate.” Glass is made of silica or sand, and sapphire is made from aluminum oxide. The two materials have very different physical properties. So, glass isn’t really the right descriptor.

  • Sapphire is unbreakable.

Well, no. That’s not really accurate. A thin piece of sapphire can shatter, similarly to glass or a piece of gorilla glass. Sapphire is the second hardest material on Earth (after the diamond). As such, a thin slice of sapphire will shatter. What is sapphire good at? Sapphire is scratch resistant. That’s one of the main reasons why smartphone vendors are interested in sapphire for applications in lenses and fingerprint scanners.

  • Sapphire is blue.
Sapphires come in a range of colors.

Sapphires come in a range of colors. The purest sapphires are clear.

Yes and No. Sapphire, also called corundum, comes in a range of colors. The purest form of sapphire is clear.  Sapphire is a crystal made from Aluminum Oxide (Al2O3). Natural sapphire forms over thousands of years in the earth, but comes in different colors due to impurities such as minerals or other conditions (like humidity or radiation). Rubies are made of aluminum oxide and are actually sapphires. They are red because the crystal contains impurities in the form of the mineral chromium, making the crystal red. Sapphire gemstones get their blue hue from iron and titanium. Yellow sapphires get their color from a combination of iron and radiation (interesting).  The commercial sapphire that’s now being used in consumer electronics is very pure, so it’s colorless.

  • Sapphire in LEDs and smart phones is from blue sapphire gemstones.

No. The sapphire that is used in LEDs and smartphones is grown in a commercial setting using one of few processes – the Verneuil Method, Kyropoulous Method, Heat Exchanger Method, Czochralski Method and Edge-Defined Film-Fed Growth Method. Each method has its differences, but they produce a single crystal of clear sapphire that is fabricated (cut and polished) into a sapphire substrate used in an LED or into a lens or faceplate for optical uses like smart phones.

 

Large Diameter Patterned Sapphire Substrates Explained

Rubicon Technology offers large diameter PSS in a range range of shapes including cone, dome and pyramid as well as custom.

Rubicon Technology offers large diameter PSS in a range of shapes including cone, dome and pyramid and range of orientations.

While LED chip manufacturers have been using patterned sapphire substrates (PSS) for years, there’s growing interest in large diameter PSS.  Recently, Rubicon Technology announced the commercial availability of large diameter PSS.  During their latest earnings call, they indicated that they’ve received interest from 7 major LED chip manufacturers for 4- and 6-inch large diameter PSS.  Why the interest from LED chip manufacturers?

First, PSS helps improve epitaxial growth by promoting growth of the GaN in parallel to the substrate surface. This also helps reduce the number of dislocations, called the dislocation density, which can degrade performance of an LED.  Secondly, patterning can help extract as much as 30 percent more light from an LED.  This is particularly advantageous for high brightness LEDs (HB LEDs) that are used in LED lighting applications.

Second, the evolution of patterning large diameter substrates brings economical advantages to LED chip manufacturers, especially those anticipating demand from the LED lighting market.  Large diameter sapphire wafers help LED chip manufacturers cut costs by enabling more throughput for each run of the MOCVD reactor.  This helps chip manufacturers make better use of the reactor “real estate” and decreases the cost per unit of area processed because of the curvature of the larger wafer.  The outer curvature of a 6-inch wafer is less, enabling greater use of the surface area than the tighter curvature of a 2-inch wafer resulting in less edge loss.  Larger diameter wafers also provide post-MOCVD efficiencies.  Depending on the type of MOCVD reactor used, LED chip manufacturers using six-inch wafer platforms may achieve up to 48% greater usable area per reactor run compared with two-inch wafers.  These efficiency gains become very compelling when manufacturers want to ramp up LED chip production to support greater volumes of LEDs for light bulbs.

Finally, LED chip manufacturers have been buying smaller 2-inch and 4-inch PSS from outside suppliers for years.  The next step in the evolution in the market is the migration to large diameter PSS for the reasons we mention above.  While some LED chip manufacturers will have specialized patterning needs and the resources to keep the work in-house, others will not.  Some LED chip manufacturers may not have the expertise and equipment to move to large diameter PSS, so having a ready, trusted supplier will prove handy.

For Further Reading

ClearlySapphire, LED Lighting Spotlight: Patterned Sapphire Substrates http://blog.clearlysapphire.com/?p=390

Semiconductor Today, Patterned sapphire for nitride enhancements, http://www.semiconductor-today.com/features/SemiconductorToday_SeptOct_PatternedSapphire.pdf

Compound Semiconductor, New Wet Process For LEDs On Patterned Sapphire Boosts Efficiency, http://www.compoundsemiconductor.net/csc/news-details.php?cat=news&id=19734296

Compound Semiconductor, Rubicon Orders Multiple Profilers For Sapphire Production, http://www.compoundsemiconductor.net/csc/news-details.php?cat=news&id=19735318

Clearlysapphire.com, Larger Wafers, Larger Yield – The Numbers Behind Large Diameter Sapphire Wafers and Yield, http://blog.clearlysapphire.com/?p=435

Rubicon Announces Large Diameter Patterned Sapphire Substrates

PSS with dome shape

PSS with dome shape

 

This week, Rubicon Technology announced the launch of the first commercial line of large diameter patterned sapphire substrates (PSS) in four-inch through eight-inch diameters.  The new product line provides LED chip manufacturers with a ready-made source of large diameter PSS to serve the needs of the rapidly growing LED general lighting industry.

This is doubly important since patterning helps improve both epitaxial growth and light extraction for each chip and enhances a chipmaker’s throughput and efficiency.  Rubicon announced that they have fully customizable sub-micron patterning capability with tight dimensional tolerances, within ±0.1 µm.  Rubicon offers LED chip manufacturers more usable area to maximize the number of chips per wafer due to an edge exclusion zone as small as 1 mm.  Rubicon’s patterning is available in a range of shapes including cone, dome and pyramid, and in a range of orientations.  Further customization of geometry, pattern and orientation is available too.  You can find a brochure about it on Rubicon’s web site here.

Rubicon’s president and CEO Raja Parvez pointed out the importance of large diameter patterned sapphire substrates in a news release.  “As LED-based general lighting gains worldwide adoption, large-diameter patterned sapphire substrates will become necessary to meet the demands of the rapidly growing lighting market.”

Parvez added that the company developed an unmatched technology platform that is vertically integrated from raw material through crystal growth, large diameter polished wafers, and now custom PSS in 4”, 6” and 8” diameters.  According to Parvez, vertical integration enables Rubicon to produce progressively larger sapphire products while providing customers with exceptional quality, cost control, reliability, and consistency.

For Further Reading

Rubicon Technology, Rubicon Technology Launches First Commercial Line of Large Diameter Patterned Sapphire Substrates for the LED Industry, http://bit.ly/1itVMHq

Clearlysapphire.com, LED Lighting Spotlight: Patterned Sapphire Substrates, http://blog.clearlysapphire.com/?p=390

 

Sapphire Inside: Apple Builds Sapphire Lens into New Home Button, Touch ID

iPhone 5S with the Touch ID includes a sapphire lens

iPhone 5S with the Touch ID includes a sapphire lens on the home button

Today, Apple announced two new models of the iPhone, the iPhone 5S and  the iPhone 5C. One of the biggest news items at the Apple event is that the new iPhone 5S will sport a whole new home button with a fingerprint sensor with a sapphire lens, ringed in stainless steel.

Sapphire, the second hardest material on Earth after the diamond, is scratch resistant, so it should be very well suited for use as a lens. While this is great news for the sapphire community, this is not the only use for sapphire in a smart phone. Many smart phone OEMs already use sapphire for the camera lens cover because of its scratch resistance, but also is used for the LEDs in the backlighting for the screens as well as the silicon-on-sapphire (SOS)-based RFIC chips that power the RF antennas. There are more places for use of sapphire in a smart phone as well since OEMS are looking to use SOS chips for digitally tunable capacitors (DTCs) and power amplifiers. And, don’t forget sapphire’s largest overall market, LEDs, for lighting, displays and more.

Apple claims that Touch ID reads a fingerprint at an entirely new level by scanning sub-epidermal skin layers with 360 degree reading capabilities.  The sensor is part of the home button which is 170 microns thick with a 500 ppi resolution.  Touch ID stores the encrypted fingerprint info securely in a “secure enclave” inside the new A7 chip, the new processor for the iPhone 5S.  The neat thing is that it should be able to store multiple fingers.  The Touch ID will enable you to purchase items on iTunes, the AppStore or iBooks without a password.

You can see where the sapphire is in this photo of the home button from CNet’s live blog of the Apple event:

iPhone 5S graphic illustrates parts of the Touch ID (from CNet)

iPhone 5S graphic illustrates parts of the Touch ID (from CNet) with sapphire

 

 

 

 

 

 

 

The iPhone 5S (and the 5C) go on pre-sale on September 13th and will be on sale in stores on September 20th.

For Further Reading

Engadget, iPhone 5S fingerprint sensor called Touch ID, recognizes your thumb on the Home button: here’s how it works and what it does, http://www.engadget.com/2013/09/10/iphone-5s-fingerprint-sensor/

 

Alternative Substrates – Dimming the Hype

Two-inch, Four-inch and Six-inch Sapphire Wafers

Two-inch, Four-inch and Six-inch Sapphire Wafers

Today, more than 80% of LEDs are made based on sapphire wafers.   Recently, Lux Research published a report, Dimming the Hype: GaN-on-Si Fails to Outshine Sapphire by 2020, about the state of alternative substrates.  In LED production, sapphire is used as the substrate onto which the chemicals that will become the emitting layer of the LED are deposited as a vapor.  With the LED lighting market expected to grow to $80 billion, Lux Research expects the substrate market to grow to $4 billion in 2020 making it a highly attractive market.  Lux expects sapphire to continue to dominate the substrate market.

“Silicon is already widely used for electronics, and some LED die manufacturers are hoping to take advantage of silicon substrates,” said Pallavi Madakasira, Lux Research Analyst and lead author of the Lux report.  She explained that GaN-on-Si presents technical challenges such as cracking and a lattice mismatch that reduces the performance of LEDs based on the alternative substrate.

In an interview with Compound Semiconductor, Madakasira spoke about LEDs based on silicon substrates.  She doesn’t buy the argument that GaN-on-silicon makers can save on costs.  She says that even if they use fully depreciated CMOS equipment, the process of depositing complex buffer layers onto silicon prior to GaN deposition to overcome GaN and silicon lattice mismatches, adds time and cost to a manufacturing line.

Madakasira also shared performance data in her report with Compound Semiconductor. She notes that alternative substrates haven’t provided the performance of sapphire.  According to Lux, the luminance efficacy of GaN-on-SiC LEDs is 200 Lumens per Watt with GaN-on-sapphire devices coming in at between 150 to 180 Lumens per Watt.

What does this mean?  The Lux report concluded that sapphire will remain highly competitive for the rest of the decade.  GaN-on-silicon, will snare only 10% market share while GaN-on-silicon carbide will grow to 18% of the market.   Where do they fit? Here are Lux’s conclusions:

  • Choice and cost of LEDs will determine adoption. Where GaN-on-sapphire is suited to all applications, GaN-on-bulk GaN will be relegated to niche commercial lighting and GaN-on-Si, with unproven performance, will be better suited to cost-sensitive residential applications.
  • Four-inch wafers will rule (for now), though six-inch wafers start to come into vogue. Four-inch wafers will peak at 62% market share with $2.1 billion in 2017 sales. Later, the LED industry will move towards 6” epiwafers, which will take a 35% share, equivalent to $1.4 billion, in 2020.
  • Technology will advance sapphire substrates. Sapphire substrate manufacturing technology has advanced significantly with specialists such as Rubicon and Monocrystal demonstrating substrates up to 12” in diameter. New methods like hydride vapor phase epitaxy (HVPE) will further improve throughput and cut costs, keeping sapphire highly competitive for the rest of the decade.

For Further Reading

Lux Research, Epi-Wafer Market to Grow to $4 Billion in 2020 as LED Lighting Zooms to $80 Billion, http://www.luxresearchinc.com/news-and-events/press-releases/182.html

Compound Semiconductor, Sapphire Substrates to Lead Future LED Markets, http://www.compoundsemiconductor.net/csc/indepth-details/19736669/Sapphire-substrates-to-lead-future-LED-market.html

How Do They Do It? From Sapphire to LED Infographic

You’ve heard a lot about LEDs, but did you know that a tiny piece of sapphire – the pure, colorless industrial variety, not the blue gemstone – is in more than 80% of LEDs? Sapphire is the foundation for the LED chip, just as silicon is for a computer chip.  Rubicon Technology has put together an infographic that describes the sapphire manufacturing process and where sapphire is found in an LED. The bottom of the infographic features examples of products that feature LEDs for lighting. Click on the infographic below to see it larger.

Infographic for Post

 

 

 

 

 

Link to: http://www.rubicontechnology.com/sites/default/files/From%20Sapphire%20to%20LED%20Infographic.pdf

New Applications for Sapphire: Aerospace & Defense, Part 1 of 3

1158-69 (1)

Range of sapphire products available from Rubicon Technology including large optical windows and other shapes for aerospace and defense.

Sapphire’s unique properties make it a perfect material for high-performance applications due to its optical transparency, physical strength, resistance to abrasion and corrosion, temperature durability, chemical inertness, and bio-compatibility. As a result, it is perfectly suited for extreme environments where material durability is just as important as optical clarity.

One extreme use case is in the aerospace and defense industry where there’s a need for rugged windows for targeting pods and missile domes, most notably for the US F-35 fighter jet, that may come in contact with harsh conditions from the harsh, gritty desert with extremely high temperatures to high altitudes with extreme low temperatures.

Market research firm Yole Developpement determined that non-substrate applications for sapphire in the defense, semiconductor and other applications represent 25% of the sapphire industry revenue in a new study.  The market represents a solid growth opportunity for sapphire makers.

While there is opportunity, innovation is needed.  Sapphire traditionally has been limited to smaller shapes and sizes using traditional growth methods.  As sensor technology and applications, in defense and aerospace in particular, have evolved, the size requirements for sapphire windows have grown substantially.  One company that is innovating sapphire crystal growth is Rubicon Technology.

In a recent paper, Rubicon’s Dr. Jonathan Levine, Director of Technical Business Development, detailed how Rubicon successfully produced very large sapphire blanks using a highly modified horizontal directional solidification process. This new method, named the Large‐Area Netshape Crystal Extraction (LANCE) system is currently able to produce crystals of several different orientations. The company plans to produce sapphire windows as large as 36 x 18 x 0.8 inches.

For Further Reading

Clearlysapphire.com Blog, Opportunities for Sapphire: New Applications & Markets Explained, http://blog.clearlysapphire.com/?p=426

Clearlysapphire.com Blog, How Large Can You Go? Sapphire Windows Grow Up and Across, http://blog.clearlysapphire.com/?p=409

Rubicon Technology, Synthesis and characterization of large optical-grade sapphire windows produced from a horizontal growth process, http://www.rubicontechnology.com/sites/default/files/Synthesis%20and%20Characterization%20of%20Large%20Optical%20Grade%20Sapphire%20Windows.pdf