Substrate Update: It’s All About Patterning & Large Diameter Wafers

yole_developpement_logoMarket research firm Yole Developpement recently published a new report on front-end manufacturing trends for LEDs. Their latest report gives us some very good news about the sapphire market. Semiconductor Today reported on Yole’s analysis. Here are some big take-aways:

  • There is increased demand for larger-diameter sapphire wafers, with big players (such as LG, Sharp or Osram) moving to 6” wafers and Taiwanese players moving to 4” wafers.
  • LED chip makers demand more patterned sapphire substrates (PSS). PSS are now mainstream in the market with an 87% share as of Q1 2014.
  • While some companies (such as Soraa and Toshiba) have begun mass production of gallium nitride-on-silicon (GaN-on-Si) and GaN-on-GaN LEDs, market penetration of these alternative substrates will depend on future improvements in terms of performance and cost.  Without these improvements, alternative substrates will not be able to fully compete with sapphire-based LEDs.

What does this mean for sapphire makers? LED chip manufacturers are looking to gain production efficiencies, lower costs, and increase performance for their LEDs.  As the adoption for LED lighting increases, they need to make more and better performing LEDs. Large diameter sapphire wafers enable more throughput for each run of the MOCVD reactor, making better use of the reactor “real estate” and decreasing the cost per unit of area processed. Depending on the type of MOCVD reactor used, LED chip manufacturers using six-inch wafer platforms may achieve up to 48% greater usable area per reactor run as compared to two-inch wafers.

What does PSS offer? First, PSS helps improve epitaxial growth by promoting growth of the GaN in parallel to the substrate surface. This helps reduce the number of dislocations, called the dislocation density, which can degrade performance of an LED.  Secondly, patterning can help extract as much as 30 percent more light from an LED.  This is particularly advantageous for high brightness LEDs (HB LEDs) that are used in LED lighting applications.

LED chip manufacturers have been buying smaller 2-inch and 4-inch PSS from outside suppliers for years.  The next step in the evolution in the market is the migration to large diameter PSS. Already a pioneer in the development of large diameter sapphire substrates, Rubicon Technology has developed capabilities for large diameter PSS making it possible to manufacture 6-inch and even 8-inch PSS. Rubicon is already gaining traction in the PSS market.  The company recently reported in their Q1 2014 earnings call that they received their first order for PSS and have samples out to more than a dozen LED chip manufacturers.

For more information about the report from Yole, visit http://www.i-micronews.com/reports/LED-Front-End-Manufacturing-Trends-report/14/433

For Further Reading

Semiconductor Today, Substrates shaping trends in LED front-end manufacturing, http://www.semiconductor-today.com/news_items/2014/APR/YOLE_300414.shtml

Clearlysapphire.com, Larger Wafers, Larger Yield – The Numbers Behind Large Diameter Sapphire Wafers and Yield, http://blog.clearlysapphire.com/?p=435

Clearlysapphire.com, Large Diameter Patterned Sapphire Substrates Explained, http://blog.clearlysapphire.com/?p=582

Clearlysapphire.com, Sapphire Substrates for LED: The Big Move Toward 6″ Has Already Started, http://blog.clearlysapphire.com/?p=37

Larger Wafers, Larger Yield – The Numbers Behind Large Diameter Sapphire Wafers and Yield

rubicon-waferyield-540x720-3Today, more than 80% of LEDs are based on sapphire substrates. For years, two-inch and four-inch diameter sapphire wafers have been the standard for LED production.  Now, LED chip manufacturers are looking to migrate to six-inch diameter wafers to increase the yield or the amount of LED chips they can make out of each wafer.  This is important as new market opportunities like LED-based general lighting take off, demanding more sapphire.

Rubicon put together an infographic, Larger Wafer, Larger Yield, about the yield from large diameter wafers. You can see it here on Rubicon’s new web site:  http://www.rubicontechnology.com/sites/default/files/Rubicon_WaferYield_v3.pdf

Rubicon Technology’s CEO Raja Parvez talked about the benefits of moving to large diameter sapphire wafers in an article, Vertical Integration Streamlines Sapphire Production, in Compound Semiconductor earlier this year.

According to Parvez, LED chip manufacturers look to large diameter sapphire wafers to cut costs.  Large diameter sapphire wafers enable more throughput for each run of the MOCVD reactor, making better use of the reactor “real estate” and decreasing the cost per unit of area processed.  The outer curvature of the 6 inch wafer is less, enabling greater use of the surface area than a 2 inch wafer resulting in less edge loss. In addition, large wafers provide post-MOCVD efficiencies.  Depending on the type of MOCVD reactor used, LED chip manufacturers using six-inch wafer platforms may achieve up to 48% greater usable area per reactor run compared with two-inch wafers.  These efficiency gains become very compelling when LED chip production ramps up in large volumes to support a high growth market like general lighting.

For Further Reading

Compound Semiconductor, Vertical Integration Streamlines Sapphire Production http://www.compoundsemiconductor.net/csc/features-details.php?cat=features&id=19736275&key=rubicon%20technology&type=